Use this form to assist you to complete risk assessments for hazardous activities and processes. Any serious or ongoing hazards should be reported via RiskWare to ensure that appropriate corrective actions are tracked and completed.

<table>
<thead>
<tr>
<th>Faculty/School:</th>
<th>School of Psychology</th>
<th>Initial Issue Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Assessment Reference Number:</td>
<td>RA_Collect_Saliva_Caffeine_1</td>
<td>Next Review Date:</td>
</tr>
<tr>
<td>Risk Assessment Name:</td>
<td>Safe Collection of Saliva In Caffeine Experiment_Llew Mills</td>
<td></td>
</tr>
<tr>
<td>Prepared by:</td>
<td>Llew Mills</td>
<td></td>
</tr>
<tr>
<td>Responsible supervisor/s:</td>
<td>Dr Ben Colagiuri, Emeritus Professor Bob Boakes</td>
<td></td>
</tr>
</tbody>
</table>

Identify the activity and the location

Activity or process: Collection of Saliva samples

Persons at risk: Researcher doing sample collection

Location: Griffith Taylor Room 517

Risk assessment team (Who was consulted?):

List of Legislation, Code of Practice, Australian Standards, Guidance Materials used to determine control measures

Risk Assessment Methodology

Assessing the risk is a brainstorming exercise, which is most effectively carried out in a team environment with the people required to complete the activity or process. Most activities or processes are broken down into a variety of separate tasks. For each task, consider the hazards, the potential harm or negative outcomes and the conditions required for those negative outcomes to occur.

Whenever assessing the health and safety risks associated with a task, always consider the following primary risk factors:

- **The physical activities** required to complete the task e.g. repetitive movement, high force, physical exertion, awkward posture
- **The work environment** e.g. lighting, work layout, traffic, thermal comfort, working in isolation
- **The nature of the hazard itself** e.g. working with chemicals, microorganisms, radiation, machinery, potentially violent clients
- **The individual workers involved**, e.g. level of training, skills, experience, health, age, physical capacity

The information gathered from the risk assessment process must be used to develop a Safe Work Procedure (SWP).
<table>
<thead>
<tr>
<th>Task or scenario</th>
<th>Hazard/s</th>
<th>Associated harm, e.g. what could go wrong?</th>
<th>Existing Risk Controls</th>
<th>Current risk rating</th>
<th>Additional Risk Controls?</th>
<th>Residual risk rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection of saliva samples for Caffeine Assay</td>
<td>Spill of saliva sample carrying human infectious microorganisms, either on person or on clothing of experimenter, leading to subsequent infection.</td>
<td>If saliva is ingested by experimenter or person other than the participant and participant is ill and contagious, possible infection.</td>
<td>Any cuts on exposed skin of the experimenter during collection of sample will be covered with plastic adhesive strips and wrapped in bandage. Health screening questionnaire, No participants currently suffering from transmissible illness or on medication included in the study. All samples collected on non-porous surfaces to facilitate ease of clean-up if sample is spilled during collection. Experimenter collecting samples does so using gloves, lab coat and and eye-protection to minimise likelihood of absorption into clothing, skin or eyes. Participant wears gloves also to prevent any saliva spilled on hands during collection from coming in contact with surfaces. Samples collected via passing saliva along plastic straw into</td>
<td>Low: 1. Viruses and Infections common in Australia that are likely to be transmitted through saliva are usually relatively low-impact (e.g. Influenza, Epstein-Barr, Cytomegalovirus). 2. More serious common viruses (e.g. HIV, Hepatitis B) are highly unlikely to be spread through saliva. 3. Serious viruses that are more easily transmissible via saliva tend to be extremely uncommon (e.g. viral meningitis). The purpose of the saliva collection is to assess the presence of caffeine in the saliva. As such any potentially dangerous microorganisms contained in saliva will not be isolated from the saliva specimen and therefore are not likely to be in concentrations high enough to present a significant risk to</td>
<td>None considered necessary. Collection of Saliva is necessary to verify participants’ abstinence from caffeine prior to experiment (an essential criteria for admission of data for analysis).</td>
<td>Low</td>
</tr>
</tbody>
</table>

1 Always consider whether or not it is possible to eliminated the hazard or hazardous task altogether. If this is not possible, refer to the hierarchy of risk controls.
plastic vial to minimise spillage. Plastic vials secured with plastic lid. Sealed plastic vials stored in sealable ‘tupperware’ type containers for transport to -80c refrigerators in South Badham. Vials frozen and stored in resealable plastic bags in refrigerator.

Gloves and straws disposed of in portable hazmat storage containers and contents then disposed of in large bins in Sydney University School of Psychology Animal House and Psychophysiology Department (South Badham Building) under existing protocols for safe disposal of hazardous waste.

Following storage both experimenters and participants use hand sanitiser to disinfect hands and wipe hands with paper towels, which are also disposed of in portable hazmat containers.
Implementation of Additional Risk Controls

<table>
<thead>
<tr>
<th>Additional risk controls needed</th>
<th>Resources required</th>
<th>Responsible person</th>
<th>Date of implementation</th>
<th>RiskWare Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write the Safe Work Procedure (SWP)</td>
<td>Time (approx 1 hour)</td>
<td>Supervisor</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Train workers to complete process in accordance with SWP</td>
<td>Time – supervisor and workers</td>
<td>Supervisor</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

List emergency controls for how to deal with fires, spills or exposure to hazardous substances and/or emergency shutdown procedures

Sample collection involves no machinery or equipment of the sort which involves the possibility emergency shutdown

Spills will be promptly cleaned up using disinfectant and safely disposed of via medical waste collection. In the event that the experimenter is exposed to the participant’s saliva sample, the experimenter will wash the affected area with disinfectant. If eye exposure occurs despite use of protective eye-wear, eye-wash facilities (available in) will be used. In the extremely unlikely event that saliva is ingested internally (i.e. orally or nasally, or through a cut in the skin) experimenter will take blood tests for all relevant infectious diseases an appropriate juncture in order to confirm if contamination has taken place. Participant will be questioned further (i.e. in addition to the medical screening questionnaire) to ascertain if they are currently suffering from any potentially transmissable disease. virus or bacteria.

No hazardous materials are stored or used in the laboratory where sample collection takes place

REVIEW

<table>
<thead>
<tr>
<th>Scheduled review date</th>
<th>1 year</th>
<th>2 years</th>
<th>3 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are the control measures in place (YES/NO)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RISK ASSESSMENT FORM

Are the control measures effective in eliminating or minimizing the risk (YES/NO)

Have the new control measures introduced any new hazards (YES/NO)

Reviewed by:

Actual Review date:

Risk Matrix

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Insignificant</th>
<th>Minor</th>
<th>Moderate</th>
<th>Major</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almost Certain</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
<td>Very High</td>
<td>Very High</td>
</tr>
<tr>
<td>Likely</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
<td>Very High</td>
</tr>
<tr>
<td>Possible</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
<td>Very High</td>
</tr>
<tr>
<td>Unlikely</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Rare</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consequence</th>
<th>Injuries not requiring First Aid</th>
<th>First Aid required</th>
<th>Medical treatment required</th>
<th>Hospital admission required</th>
<th>Death or permanent disability to one or more persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>People</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Insignificant**
 - Is expected to occur in most circumstances
 - Will probably happen in most circumstances
 - Could occur at some time
 - Not likely to occur in normal circumstances
 - May occur only in exceptional circumstances

- **Minor**
 - Almost Certain
 - Likely
 - Possible
 - Unlikely
 - Rare

- **Moderate**
 - Almost Certain
 - Likely
 - Possible
 - Unlikely
 - Rare

- **Major**
 - Almost Certain
 - Likely
 - Possible
 - Unlikely
 - Rare

- **Severe**
 - Almost Certain
 - Likely
 - Possible
 - Unlikely
 - Rare