PSYC 3014 – Behavioural & Cognitive Neuroscience

Unit of Study Code: PSYC3014

Coordinator: Dr Laura Corbit
Office: Room 241 Top South Badham
Phone: 9351 7074
E-mail: laura.corbit@sydney.edu.au
Consultation times: by appointment

Other Lecturing Staff:

Prof Iain McGregor
Office: Room 245 Top South Badham
Phone: 9351 3571
E-mail: iain.mcgregor@sydney.edu.au
Consultation times: by appointment

Prof Justin Harris
Office: Room 478 Griffith Taylor Building
Phone: 9351 2864
E-mail: justin.harris@sydney.edu.au
Consultation times: by appointment

Dr Irina Harris
Office: Room 510 Griffith Taylor Building
Phone: 9351 3497
E-mail: irina.harris@sydney.edu.au
Consultation times: by appointment

Dr Karen Croot
Office: Room 443 Brennan MacCallum Building
Phone: 9351 2647
E-mail: karen.croot@sydney.edu.au
Consultation times: by appointment

Assoc Prof Alex Holcombe
Office: Room 504 Griffith Taylor Building
Phone: 9351 2883
E-mail: alex.holcombe@sydney.edu.au
Consultation times: by appointment

Tutors: TBA- Your tutor will advise you of their consultation times in the first tutorial.

Format of Unit: 2 x 1 hour lectures/week x 13 weeks
1 x 2 hour tutorial/week x 10 weeks

Credit Point Value: 6 Credit Points

Prerequisite: 1. PSYC (2011 or 2911 or 2111) and at least one other Intermediate Psychology Unit from PSYC (2012 or 2112), PSYC (2013 or 2113), PSYC (2014 or 2114).
OR
2. (PSYC2011 or 2911 or 2111 or 2013) and ANAT2010 and PCOL2011.
LECTURE AND TUTORIAL TIMETABLE

Lectures are held on Mondays at 11am in *Bosch Lecture Theatre 4* and Thursdays at 11am in *Bosch Lecture Theatre 1*

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture #</th>
<th>Topic</th>
<th>Lecturer</th>
<th>Tutorial (2 hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 July</td>
<td>1</td>
<td>Long term potentiation</td>
<td>LC</td>
<td>No tutorial</td>
</tr>
<tr>
<td>Week 1</td>
<td>2</td>
<td>Neural bases of Pavlovian conditioning</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>4 Aug</td>
<td>3</td>
<td>Psychopharmacology I</td>
<td>IM</td>
<td>Neuroanatomy</td>
</tr>
<tr>
<td>Week 2</td>
<td>4</td>
<td>Psychopharmacology II</td>
<td>IM</td>
<td></td>
</tr>
<tr>
<td>11 Aug</td>
<td>5</td>
<td>Psychopharmacology III</td>
<td>IM</td>
<td>Behavioural Neuroscience I</td>
</tr>
<tr>
<td>Week 3</td>
<td>6</td>
<td>Psychopharmacology IV</td>
<td>IM</td>
<td></td>
</tr>
<tr>
<td>18 Aug</td>
<td>7</td>
<td>Movement and motor control I</td>
<td>JH</td>
<td>Behavioural Neuroscience II</td>
</tr>
<tr>
<td>Week 4</td>
<td>8</td>
<td>Movement and motor control II</td>
<td>JH</td>
<td></td>
</tr>
<tr>
<td>25 Aug</td>
<td>9</td>
<td>Biological Bases of Dementias</td>
<td>JH</td>
<td>Parkinson’s Disease</td>
</tr>
<tr>
<td>Week 5</td>
<td>10</td>
<td>Dementia: Clinical Syndromes</td>
<td>IH</td>
<td></td>
</tr>
<tr>
<td>1 Sep</td>
<td>11</td>
<td>Episodic Memory</td>
<td>IH</td>
<td>Dementia</td>
</tr>
<tr>
<td>Week 6</td>
<td>12</td>
<td>High Level Visual Processing I</td>
<td>IH</td>
<td></td>
</tr>
<tr>
<td>8 Sept</td>
<td>13</td>
<td>High Level Visual Processing II</td>
<td>IH</td>
<td>No tutorial: finalize your report</td>
</tr>
<tr>
<td>Week 7</td>
<td>14</td>
<td>Visual Recognition Disorders</td>
<td>IH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reports due before 4pm on</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Friday 12 September</td>
</tr>
<tr>
<td>15 Sep</td>
<td>15</td>
<td>Semantic Memory</td>
<td>KC</td>
<td>Research Methods</td>
</tr>
<tr>
<td>Week 8</td>
<td>16</td>
<td>Lexical retrieval and anomia</td>
<td>KC</td>
<td></td>
</tr>
<tr>
<td>22 Sept</td>
<td>17</td>
<td>Stroke and acquired speech and language</td>
<td>KC</td>
<td>Aphasias</td>
</tr>
<tr>
<td>Week 9</td>
<td></td>
<td>impairments</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Recovery from Aphasia</td>
<td>KC</td>
<td></td>
</tr>
<tr>
<td>29 Sep</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Oct</td>
<td>-</td>
<td></td>
<td></td>
<td>No tutorials</td>
</tr>
<tr>
<td>Week 10</td>
<td>19</td>
<td>Speech Motor Control</td>
<td>KC</td>
<td></td>
</tr>
<tr>
<td>13 Oct</td>
<td>20</td>
<td>Brains vs. Computers I</td>
<td>AH</td>
<td>Debate</td>
</tr>
<tr>
<td>Week 11</td>
<td>21</td>
<td>Brains vs. Computers II</td>
<td>AH</td>
<td></td>
</tr>
<tr>
<td>20 Oct</td>
<td>22</td>
<td>Attention and the parietal lobe I</td>
<td>AH</td>
<td>Simulating lil’ brains</td>
</tr>
<tr>
<td>Week 12</td>
<td>23</td>
<td>Attention and the parietal lobe II</td>
<td>AH</td>
<td></td>
</tr>
<tr>
<td>27 Oct</td>
<td>24</td>
<td>Sleep</td>
<td>LC</td>
<td>Quiz on tutorial work</td>
</tr>
<tr>
<td>Week 13</td>
<td>25</td>
<td>Biological Rhythms</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>3 Nov</td>
<td></td>
<td>Study Break</td>
<td></td>
<td>No classes</td>
</tr>
<tr>
<td>Week 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Nov</td>
<td></td>
<td>Exam Period</td>
<td></td>
<td>No classes</td>
</tr>
<tr>
<td>Week 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Nov</td>
<td></td>
<td>Exam Period</td>
<td></td>
<td>No classes</td>
</tr>
<tr>
<td>Week 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LC = Laura Corbit, IM = Iain McGregor, JH = Justin Harris, IH = Irina Harris, KC= Karen Croot, AH = Alex Holcombe
Assessment:

Examination: 50% of total mark: Half of the available marks from multiple-choice questions and half from short answer questions.

Written Assignment: One 2000-2500 word essay/report (30%) due before 4pm 12 September (Week 7)

Tutorial Quiz: held in tutorial (Week 13 – starting 27 October) assessing the tutorial material not covered in the report (10%)

Debate: Participation in-class debate in Week 11 (starting 13 October) and one-page hand-written summary of personal research on the debate topic (5%)

Tutorial attendance and participation: 5% The tutorial participation mark is awarded to students who make every effort to engage with the in-class exercises and discussions.

* Completion of these components is compulsory to pass this unit. Students who fail to do so will receive an Absent Fail regardless of their final grade.

<table>
<thead>
<tr>
<th>PSYC3014 Assessment Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>What?</td>
</tr>
<tr>
<td>Assignment (Essay)</td>
</tr>
<tr>
<td>Exam</td>
</tr>
<tr>
<td>Debate</td>
</tr>
<tr>
<td>Quiz</td>
</tr>
</tbody>
</table>

Total (plus 5% for participation) 100%

Last possible date and time for submission of this assignment with or without extensions.

NB: It is a requirement to pass the course that you attend a minimum of 80% of tutorial classes. It is your responsibility to attend the class you are enrolled in and to be marked as present. Tutors will NOT contact another tutor to confirm your attendance if you do not attend your enrolled tutorial.

It is very important that you read the general administrative guidelines for submission of written work, penalties for late work, assessment criteria, procedures for applying for extensions and special consideration in the Undergraduate Student Guide – available on the e-learning site as well as here: http://sydney.edu.au/science/psychology/current_students/doc/2014_Psych_UG_Student_Guide.pdf
Late Penalties
Assignments submitted after the due date and time will incur a late penalty unless waived by special consideration, special arrangement or disability services adjustment. The School of Psychology’s standard practice for applying late penalties is that 10 marks are deducted from the raw mark per week of lateness (up to a maximum of 30 marks). Once assignments are marked and returned to students, the School will accept no additional or late submission from any student. If the assignment is compulsory, and you miss this deadline, you will have to complete an alternative assignment to complete the course.

Special Consideration
All applications for Special Consideration must be submitted in person with the Faculty of Science regardless of the degree in which you are enrolled. You can apply for special consideration for any assessable component in your Unit of Study (e.g. assignments, exams, etc.). Note that you require supporting documentation for all special consideration applications.
Assessments are designed to provide feedback on academic performance and to establish that students have achieved an adequate standard to proceed through their degree or to graduate. The University’s assessment system is designed to ensure that conditions are fair to all students, are as consistent as possible and that individual students are not disadvantaged by adverse personal circumstances beyond their control or by the activities of other students.
Generally, serious illness, injury or misadventure will be taken into account when considering a student’s performance in a Unit of Study. There is, however, a clear distinction between longstanding illnesses or difficulties which prevent students from attending classes or completing required work or which seriously interfere with their capacity to study for long periods and short term illnesses, injuries or misadventures which may prevent a student from sitting for an examination or completing a particular assessment. In general, the provisions of special consideration are intended to apply to the latter situations.
The special consideration process is not intended for students with long standing medical conditions or disabilities. Affected students should instead register with Disability Services as soon as possible.
Applications must be lodged within five (5) working days of the due date (i.e. 5 days before and 5 days after the due date) of the assessment task for which special consideration is sought.
Students who apply for and are granted either special arrangements or special consideration for examinations in units offered by the Faculty of Science will be expected to sit any replacement exams in the two weeks immediately following the end of the formal examination period. Later dates for replacement assessments may be considered where the application is supported by appropriate documentation and provided that adequate resources are available to accommodate any later date.
For detailed information regarding the special consideration process, and a list of FAQs, please use the following link:

Textbook
This is the recommended text for the course. Most of you would have used it in PSYC2011 and the lecturers will refer to this text.

Some of you may also have the following if you took PSYC2011 prior to 2011 and it may also be a useful reference:

There are many other texts available that will touch on topics from the course. You are free to use these as additional sources but be aware that content in this field changes quickly and older texts can often contain inaccuracies. Lectures may also provide references to other sources for you to study (e.g. research or review articles) where the most current research output may not be addressed in the textbook.
Unit of study general description:

This unit of study will focus on approaches to studying neurosciences incorporating molecular, preclinical and clinical models of brain function. These biological models of brain function will be linked with behavioural, affective and cognitive function and dysfunction. The implications of focal cognitive deficits in neurological patients for models of normal cognitive function will also be explored. Specific topics to be covered will be selected from the following areas: the biological basis of feeding and appetite, psychoneuroimmunology, glial cell function, the neural basis of learning and memory, sensorimotor integration, neurodegenerative disease, social neuroscience, language, visual cognition and praxis. In addition to lectures, a practical component will cover basic neuroanatomy and introduce students to experimental and case-study approaches to studying neurosciences.

Graduate Attributes in Behavioural and Cognitive Neuroscience

This course is structured around the graduate attributes associated with the scientist-practitioner model, the basis for the training of psychologists in Australia and internationally. Graduate Attributes are the generic skills, abilities and qualities that students should acquire during their university experience and the School of Psychology is committed to providing an environment to promote these skills. In addition, this unit of study will provide students with generalised and transferable skills that will also be useful in careers outside psychology.

The following graduate attributes and student learning outcomes will be developed through lectures, practical classes and assessment activities. They will be assessed in the laboratory report, tutorial quiz, class debate and final exam.

1: Knowledge and Understanding of behavioural neuroscience and cognitive neuroscience

Display basic knowledge and understanding of major concepts, theoretical perspectives, empirical findings, and historical trends in behavioural and cognitive neuroscience

Student learning outcomes:
(i) An interest in and appreciation of the historical and current contribution of learning theorists, neuroscientists, psychopharmacologists, cognitive and sensory scientists to the understanding of the brain and behaviour and to the treatment of mental illness and neurological disorders.
(ii) Understanding basic neural processes and anatomical systems underlying different types of learning and memory.
(iii) Understanding the neural control of movement and its disorders
(iv) Understanding the clinical presentation and biological bases of dementia
(v) Understanding neural systems underlying speech and language and its disorders
(vi) Understanding of concepts of neural computation
(vii) Understanding neural correlates of sleep and wakefulness
(viii) Ability to describe, explain and evaluate research studies in these fields.
(ix) Skill in reporting experimental work using standard conventions.

2: Research Methods in behavioural and cognitive neuroscience

Understand, apply and evaluate basic research methods in behavioural and cognitive neuroscience, including design of laboratory and clinical research, data collection, analysis and interpretation, literature searches and review. Demonstrate understanding of technologies used to study brain function and activity.

Student learning outcomes:
(i) To develop a critical understanding of the major methods of research in these areas.
(ii) To critically assess the major theories and research findings in these areas.
(iii) To interpret statistical analyses.
(iv) Use basic web-search, word-processing, database, email, spreadsheet, and data analysis programs.
(v) Design and conduct basic studies to address psychological questions: frame research questions; undertake literature searches; critically analyse theoretical and empirical studies; formulate testable hypotheses; operationalise variables; choose an appropriate methodology; make valid and reliable measurements; analyse data and interpret results; and write research reports.

3: Critical Thinking Skills in behavioural and cognitive neuroscience
Respect and use critical and creative thinking, skeptical inquiry, and the scientific approach to solve problems related to the neuroscientific bases of behaviour. Develop ability to identify and evaluate the purposes, research questions, data, perspectives, inferences, concepts, implications and assumptions associated with research presented during the course.

Student learning outcomes:
(i) Demonstrate an attitude of critical thinking that includes persistence, open-mindedness, and intellectual engagement.
(ii) Evaluate the quality of information, including differentiating empirical evidence from speculation.
(iii) Evaluate issues and behaviour using different theoretical and methodological approaches.
(iv) Use reasoning and evidence to recognise, develop, defend, and criticise arguments and persuasive appeals.

4: Values in behavioural and cognitive neuroscience

Student learning outcomes:
(i) Value empirical evidence; tolerate ambiguity during the search for greater understanding of behaviour and knowledge structures
(ii) Use information in an ethical manner (e.g., acknowledge and respect the work and intellectual property rights of others through appropriate citations in oral and written communication)
(iii) Be able to recognise and promote ethical practice in research.
(iv) Promote evidence-based approaches and rigour in the understanding of behaviour.
(v) Be aware of ethical issues pertaining to clinical interventions.
(iv) Respect diversity associated with cognitive and neurological disorder

5: Communication Skills in behavioural and cognitive neuroscience

Student learning outcomes:
(i) Write a standard research report using American Psychological Association (APA) structure and formatting conventions.
(ii) Write effectively in a variety of other formats (e.g., essays, research proposals, reports) and for a variety of purposes (e.g., informing, arguing).
(iii) Demonstrate effective oral communication skills in various formats (e.g., debate, group discussion, presentation) and for various purposes.
(iv) Collaborate effectively, demonstrating an ability to: work with groups to complete projects within reasonable timeframes; manage conflicts appropriately and ethically.

6: Learning and the application of behavioural and cognitive neuroscience

Student learning outcomes:
(i) To develop an awareness of the applications of the theories and research findings in learning, control of movement, memory, language, visual processing, computational modeling and sleep.
(ii) Apply psychological concepts, theories, and research findings to solve problems in everyday life and in society.
(iii) Understand major areas of applied psychology and neuroscience.
(iv) Understand how basic research in psychopharmacology and neuroscience gives rise to treatments for addictions, movement and memory disorders and other neurological disorders.
(v) Develop a capacity for independent learning that will sustain personal and professional development in the rapidly changing field of neuroscience
(iv) Self-assess performance accurately: incorporate feedback for improved performance; purposefully evaluate the quality of one’s thinking (metacognition, part of critical thinking).