PSYC3210 – Perceptual Systems

Unit of Study Code: PSYC3210

Coordinator: Dr John Predebon
Office: Room 508 Griffith Taylor Building
Phone: 9351 3321
E-mail: johnp@psych.usyd.edu.au

Other Teaching Staff: Professor Ian Curthoys
Office: Room 231 South Badham Building
Phone: 93513570
E-mail: ianc@psych.usyd.edu

Dr Tatjana Seizova-Cajic
Office: Room 505 Griffith Taylor Building
Phone: 9036 9223
Email: tanjas@psych.usyd.edu.au

Format of Unit: 2 x 1 hour lectures/week x 13 weeks
1 x 1 hour tutorial/week x 12 weeks
Tutorial sizes: maximum of 20 students per group

Credit Point Value: 4 Credit Points

Qualifying: 8 credit points of Second Year Psychology including PSYC 2111 and PSYC 2112

Assessment: Class work:
Class Report (5%)
Week 5, Monday 11 April

Group presentation (10%)
Weeks 6 and 7, throughout tutorial time

Tutorial Quiz Test (20%)
Week 13, 6 June – 9 June

Examination: 65%: Multiple choice questions and short answers
Unit of study general description:

The unit covers at an advanced level selected topics in perception from the psychophysical, physiological and neuropsychological perspectives, and from both the applied and theoretical levels of analyses. Students are expected to gain an understanding of some of the major theoretical issues motivating current perceptual research, to appreciate the significance of basic perceptual research for understanding normal perceptual functioning, and to be able to evaluate the empirical and conceptual worth of research contributions.

Teaching outcomes:

- Awareness and understanding of the conceptual issues and problems associated with inferring the mechanisms underlying perceptual abilities on the basis of links between neurophysiological and psychophysical data.
- Ability to describe and critically evaluate the neuropsychological and behavioural studies relevant to our understanding of the relationship between visually guided actions and perception.
- Critical understanding of the major theoretical approaches to perception.
- Ability to describe and evaluate the relationship between perception and the physical stimulus.
- Knowledge of the structural and functional properties of perceptual modalities with emphasis on audition, vision and proprioception.
- Understanding of the processes by which combined input from various senses (vision, touch, proprioception) contribute to normal perceptual experience and action.
- Understanding of the basic processing principles common to various perceptual modalities (relative plasticity of the neural substrate; optimization in processing of information; attunement of the perceptual apparatus to the ecological niche of a particular organism).
- Understanding of the basic factors involved in hearing and how hearing can be distorted by receptor and neural loss.

Evidence of learning:

Assessment of work completed in tutorials will take the form of a Class Report (due in Week 5) and Group Class Presentation (Weeks 6 and 7), and a Quiz Test (Week 13). At the end of semester, an examination (short answer and multiple choice) will assess knowledge of the entire course including tutorial work, lecture material, recommended reading and all the stated teaching outcomes.

Lecture Program:

The course will cover the following topics:

Tatjana Seizova-Cajic
- Touch
- Perceptual plasticity
- Proprioception
- Intersensory integration
Ian Curthoys
- Analysis of sound stimuli
- The reception and neural transmission of auditory information
- The relation of
 - pitch perception
 - speech perception
 - binaural hearing
to the neural processing of sound stimuli

John Predebon
- Perception and action: The functions of visual perception; the concept of dissociations; critique of current evidence and theory
- Binocular vision: Stereopsis; Stereoscopic depth constancy, the inverse square-law; evidence;
- Direct vs indirect theories of space perception; ecological versus information-processing approaches
- Perceptual covariations; examples from motion and distance domains
- Attentional effects on visual processing; psychophysical and neurophysiological studies
- Visual attention and eye movements; object- versus spaced-based approaches

Tutorial Program:
The program consists of a mixture of laboratory-based tutorials in which students participate in class demonstrations and experiments, discussion tutorials on the results of class experiments and on selected lecture topics, and self-directed (interactive) computer-based tutorials. **NOTE: the sequencing of tutorial topics is subject to change.**

<table>
<thead>
<tr>
<th>Week 1</th>
<th>No tutorials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td>Tactile Perception</td>
</tr>
<tr>
<td>Week 3</td>
<td>Proprioception</td>
</tr>
<tr>
<td>Week 4</td>
<td>Signal detection theory – introduction and demonstration</td>
</tr>
<tr>
<td>Week 5</td>
<td>Signal detection theory – data analysis and discussion</td>
</tr>
<tr>
<td>Week 6</td>
<td>Perceptual disorders</td>
</tr>
<tr>
<td>Week 7</td>
<td>Perceptual disorders</td>
</tr>
<tr>
<td>Week 8</td>
<td>Auditory perception</td>
</tr>
<tr>
<td>Week 9</td>
<td>Visual search</td>
</tr>
<tr>
<td>Week 10</td>
<td>Binocular vision 1</td>
</tr>
<tr>
<td>Week 11</td>
<td>Binocular vision 2</td>
</tr>
<tr>
<td>Week 12</td>
<td>Visual performance</td>
</tr>
<tr>
<td>Week 13</td>
<td>Assessment</td>
</tr>
</tbody>
</table>

TEXT
There is no set text. Readings are based on journal articles and chapters from selected books.