PSYC2112 – Psychological Statistics

Unit of Study Code: PSYC2112

Coordinator: Dr Margaret Charles
Office: Room 635 Mungo MacCallum Building
Phone: 9351 3354
E-mail: margretc@psych.usyd.edu.au

Format of Unit:
2 x 1 hour lectures/week x 13 weeks
1 x 1 hour tutorial/week x 12 weeks
1 x 1 hour computer tutorial x 6 weeks (alternate weeks)
Tutorial sizes: maximum of 20 students per group

Please note that when you register for tutorials, you need to indicate preferences for times for both your weekly statistics (STA) tutorial and your fortnightly computer (COM) tutorial. You will be allocated to either EVEN or ODD weeks for your computer tutorial; remember to check which one when you find out your tutorial allocations. You should check on the Psychology 2 noticeboard which is located on 5th floor of Griffith Taylor Building on 2 March 2001. Also remember that tutorials commence in week 2, an EVEN week.

Credit Point Value: 4 Credit Points

Qualifying: 12 credit points of First Year Psychology including PSYC 1001 and PSYC 1002

Assessment:

Classwork:
35% Tutorial Tests
Held in weekly tutorials in Week 4 (19 March – 23 March, 10%), Week 8 (23 April – 27 April, 12.5%) and Week 12 (21 May to 25 May, 12.5%)

20% Midsemester examination/test (computerised)
Held in weekly tutorial in Week 9 (30 April – 4 May)

10% Group project
Due Date: Wednesday June 6

Examination:
35% multiple choice questions

Evaluation of teaching and learning:
Date: Week 13 of the semester
Type: Questionnaire

Unit of study general description:

In this unit of study you will be introduced to some of the basic concepts of statistics and statistical inference as used in psychological research. The aim of the course is to develop your ability to understand the published research literature, to design and plan research questions with a clear idea of how to test the questions of interest, and to become critical consumers of any sort of statistical information. Your introduction to the computer package SPSS is designed with the goal of making you informed users of the technology. To encourage you to maintain the required level of application, assessments will be carried out regularly.
Teaching outcomes:

Students will be expected to:

- calculate and interpret descriptive statistics such as measures of central tendency and variability.
- demonstrate understanding of graphical and tabular representations of data, and be able to use statistical tables (which will be provided).
- demonstrate the ability to formulate and carry out significance tests for statistical hypotheses appropriate to a variety of research situations.
- be able to compute and interpret confidence intervals.
- understand the limitations of, and possibility of errors in, statistical inference.
- appreciate how flaws in experimental design limit possible conclusions and may affect the power of the statistical test.
- be able to carry out appropriate statistical tests on computer using SPSS, as taught in tutorials, and interpret the output accordingly.
- apply and synthesise the material covered in a group research project which involves the analysis, reporting and interpretation of data.

Evidence of learning:

Assessment is continuous and varied to enable students to demonstrate their understanding of all aspects of the unit of study.

Written assessments will be open book and will test the student's ability to carry out various procedures and to report the results appropriately. The subject matter of each of the 3 written tests, as detailed under Assessments (above), will be specified in lectures.

The group project is to encourage the ability to work in groups and pool knowledge and abilities to produce a superior report of research and analysis.

The examinations (midsemester and final) are closed book, and consist of multiple choice questions. The midsemester examination is computerised and is held in tutorials, the end of semester examination is held under normal examination conditions.

SYLLABUS

Descriptive statistics: Measures of central tendency and variability. Effects of transformation on a set of scores. Finding areas under the normal curve.

Inferential statistics: Formulating hypotheses for tests of statistical significance for a single mean, using z and t tests; for 2 related means and for 2 independent means using t tests. Analysis of variance and follow-up tests for tests about means with 2 or more groups. Looking at relationships between two continuous variables: correlation. Factors affecting correlation. Testing correlation coefficients for statistical significance. Categorical data: tests for frequency data using the chi-square statistic.

Experimental design: understanding the problems of designing research to answer specific questions, and limitations in the conclusions that can be drawn.
TIMETABLE

<table>
<thead>
<tr>
<th>WEEK</th>
<th>LECTURES</th>
<th>TUTORIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Descriptive statistics: central tendency and variability</td>
<td>No meeting</td>
</tr>
<tr>
<td>2</td>
<td>Standard deviation, z scores, normal distribution</td>
<td>Descriptive statistics</td>
</tr>
<tr>
<td>3</td>
<td>Hypothesis testing; sampling distribution of the mean</td>
<td>Normal distribution</td>
</tr>
<tr>
<td>4</td>
<td>Hypothesis testing: t test for a single mean</td>
<td>Hypothesis testing</td>
</tr>
<tr>
<td>5</td>
<td>Parameter estimation; statistical power</td>
<td>Hypothesis testing</td>
</tr>
<tr>
<td>6</td>
<td>Experimental design issues & related samples t test</td>
<td>Parameter estimation</td>
</tr>
<tr>
<td>7</td>
<td>Independent samples t test</td>
<td>Repeated measures t-test</td>
</tr>
<tr>
<td>8</td>
<td>Analysis of variance - one-way</td>
<td>Anova</td>
</tr>
<tr>
<td>9</td>
<td>Analysis of variance - two way</td>
<td>MID SEMESTER EXAM</td>
</tr>
<tr>
<td>10</td>
<td>Correlation</td>
<td>Anova</td>
</tr>
<tr>
<td>11</td>
<td>Correlation; Chi-square test for goodness of fit</td>
<td>Correlation</td>
</tr>
<tr>
<td>12</td>
<td>Chi-square test of independence</td>
<td>Correlation</td>
</tr>
<tr>
<td>13</td>
<td>Overview and revision</td>
<td>Chi-square tests</td>
</tr>
</tbody>
</table>

TEXT

NOTE: Two versions of the Howell text are available, only one of which is needed. For those students who have done no statistics before (Psych. 1 not included) and are apprehensive, the 'Fundamentals' book is recommended. For those who have some statistical training, the 'Methods' book is more advanced and a valuable reference for further study in Psychology.

EITHER

OR

REFERENCES

The following have been texts in previous years and may be useful for supplementary reading and exercises: